Diverse synaptic connections between peptidergic radula mechanoafferent neurons and neurons in the feeding system of Aplysia.
نویسندگان
چکیده
The buccal ganglion of Aplysia contains a heterogeneous population of peptidergic, radula mechanoafferent (RM) neurons. To investigate their function, two of the larger RM cells (B21, B22) were identified by morphological and electrophysiological criteria. Both are low-threshold, rapidly adapting, mechanoafferent neurons that responded to touch of the radula, the structure that grasps food during ingestive and egestive feeding movements. Sensory responses of the cells consisted of spike bursts at frequencies of 8-35 Hz. Each cell was found to make chemical, electrical, or combined synapses with other sensory neurons, motor neurons and interneurons involved in radula closure and/or protraction-retraction movements of the odontophore. Motor neurons receiving input included the following: B8a/b, B15, and B16, which innervate muscles contributing to radula closing; and B82, a newly identified neuron that innervates the anterodorsal region of the I1/I3 muscles of the buccal mass. B21 and B22 can affect buccal motor programs by way of their connections to interneurons such as B19 and B64. Fast, chemical, excitatory postsynaptic potentials (EPSPs) produced by RM neurons, such as B21, exhibited strong, frequency-dependent facilitation, a form of homosynaptic plasticity. Firing B21 also produced a slow EPSP in B15 that increased the excitability of the cell. Thus a sensory neuron mediating a behavioral response may have modulatory effects. The data suggest multiple functions for RM neurons including 1) triggering of phase transitions in rhythmic motor programs, 2) adjusting the force of radula closure, 3) switching from biting to swallowing or swallowing to rejection, and 4) enhancing food-induced arousal.
منابع مشابه
Outputs of radula mechanoafferent neurons in Aplysia are modulated by motor neurons, interneurons, and sensory neurons.
The gain of sensory inputs into the nervous system can be modulated so that the nature and intensity of afferent input is variable. Sometimes the variability is a function of other sensory inputs or of the state of motor systems that generate behavior. A form of sensory modulation was investigated in the Aplysia feeding system at the level of a radula mechanoafferent neuron (B21) that provides ...
متن کاملA population of SCP-containing neurons in the buccal ganglion of Aplysia are radula mechanoafferents and receive excitation of central origin.
The rostral cluster of SCP-immunoreactive cells, originally identified in each buccal hemiganglion of juvenile Aplysia, was examined in mature specimens. Immunohistochemical and dye-fill experiments showed that each rostral cluster consists of approximately 40 cells. Although these neurons exhibit heterogeneity of size and shape, all cells project an axon into the radula nerve. Tracing of dye-f...
متن کاملAfferent-induced changes in rhythmic motor programs in the feeding circuitry of aplysia.
A manipulation often used to determine whether a neuron plays a role in the generation of a motor program involves injecting current into the cell during rhythmic activity to determine whether activity is modified. We perform this type of manipulation to study the impact of afferent activity on feeding-like motor programs in Aplysia. We trigger biting-like programs and manipulate sensory neuron...
متن کاملEffect of a serotonergic extrinsic modulatory neuron (MCC) on radula mechanoafferent function in Aplysia.
The serotonergic metacerebral cells (MCCs) and homologous neurons in related mollusks have been extensively investigated within the context of feeding. Although previous work has indicated that the MCCs exert widespread actions, MCC modulation of sensory neurons has not been identified. We characterized interactions between the MCCs and a cell that is part of a recently described group of bucca...
متن کاملAn identified histaminergic neuron modulates feeding motor circuitry in Aplysia.
An identified histaminergic neuron, C2, in the marine mollusk Aplysia is a complex mechanoafferent which appears to contribute to the maintenance of food arousal by means of its synaptic connections to the metacerebral cell (MCC). Because C2 also has extensive synaptic outputs to neurons other than the MCC, we studied its possible motor functions. We identified several synaptic followers of C2 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 83 3 شماره
صفحات -
تاریخ انتشار 2000